Math 5B Chapter 6

6.1i Review of Inverse Functions

Given $f(x)=\frac{1}{2} x^{2}+2 ; \quad x \geq 0$

- find $f^{-1}(x)$
- find the domain and range of $f(x) \& f^{-1}(x)$
- sketch a graph of $f(x) \& f^{-1}(x)$
- prove the functions are inverses by showing $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$

Math 5B Chapter 6

6.2i Review of Exponential Functions plus limits (NOTE: not blue pages 6.2*)

Review: Exponential Functions $f(x)=a^{x}$

Formally defining $f(x)=a^{x}$ for x irrational,

Computing limits: Examples.
$\lim _{x \rightarrow \infty} 3^{-x}$
$\lim _{x \rightarrow 0^{+}} 5^{1 / x}$
$\lim _{x \rightarrow \infty} \frac{2^{x}}{2^{x}+1}$

6.3 Review of Logarithmic Functions plus Limits

Let's explore the inverse of the exponential function. Based on our knowledge of the relationship of functions to their inverses, we can know a lot about the inverse of $f(x)=a^{x}$ before we even compute it.

Since we found that for $f(x)=a^{x}$

Domain of $f(x)$ is $(-\infty, \infty) \Rightarrow$ Range of $f^{-1}(x)$ is \qquad
Range of $f(x)$ is $(0, \infty) \Rightarrow \quad$ Domain of $f^{-1}(x)$ is \qquad
Computing $f^{-1}(x)$ for $f(x)=a^{x} \Rightarrow y=a^{x}$. Switching x and y we get $x=a^{y}$. Now solve for $\mathrm{x} . .$. ?

$$
\log _{a} x=y \quad \Leftrightarrow \quad a^{y}=x
$$

Math 5B Chapter 6

The natural logarithm, is a logarithm whose base is e

$$
\log _{e} x=\ln x=y \quad \Leftrightarrow \quad e^{y}=x
$$

You should be familiar with the basic shape of the logarithm graphs. It will really help when we discuss limits.

$$
y=\log _{a} x \quad a>1(\text { includes } \ln x) \quad y=\log _{a} x ; \quad 0<a<1
$$

Math 5B Chapter 6
The rate at which $\ln (x) \rightarrow \infty$

Math 5B Chapter 6

Limit Examples:

$\lim _{x \rightarrow 0^{+}} \ln (\sin x)$
$\lim _{x \rightarrow \infty}(\ln (x)-\ln (x+1))$

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}
$$

Math 5B Chapter 6

6.6i Review of Inverse Trigonometric Functions

Inverse Sine Function

Does $g(x)=\sin (x)$ have an inverse? \qquad

What restriction would we need to make so that at least a piece of this function has an inverse?

Given $f(x)=\sin (x)$;

1) Find $f^{-1}(x)$
2) Graph $f(x)$ and $f^{-1}(x)$
3) Find the domain and range of $f(x)$ and $f^{-1}(x)$

Math 5B Chapter 6

$$
\text { We define } y=\sin ^{-1}(x) \text { or } y=\arcsin (x) \text { to mean }\left\{\begin{array}{c}
\sin (y)=x \\
A N D \\
-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{array}\right.
$$

Note: Both the input and output of this function are real numbers, but it is sometimes helpful to think in terms of angles.

$$
\text { that is let } \theta=\sin ^{-1}(x) \text { or } \theta=\arcsin (x) \text { mean }\left\{\begin{array}{c}
\sin (\theta)=x \\
A N D \\
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
\end{array}\right.
$$

For example:

$$
\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \quad \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

$$
\sin (\text { angle })=\text { number } \quad \sin ^{-1}(\text { number })=\text { angle in }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Finding exact values of the inverse sine function for special inputs: (like: \qquad \square
Ex: $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Set $\theta=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ and re-write according to the definition as \qquad
In words: $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is the real number (or angle) in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine (or y value on the \quad unit circle) is $\frac{\sqrt{3}}{2}$

Math 5B Chapter 6

Ex: $\sin ^{-1}\left(\frac{-\sqrt{2}}{2}\right)$
Since $y=\sin ^{-1}(x)$ is a function, \qquad

Inverse Cosine Function

What restriction would we need to make so that at least a piece of this function has an inverse?
of angles. The development is similar to $\sin ^{-1}(x)$, review as needed.

$$
\text { let } \theta=\cos ^{-1}(x) \text { or } \theta=\arccos (x) \text { mean }\left\{\begin{array}{c}
\cos (\theta)=x \\
A N D \\
0 \leq \theta \leq \pi
\end{array}\right.
$$

Finding exact values of the inverse cosine function for special inputs:
Ex: $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
$\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

Math 5B Chapter 6

Inverse Tangent Function

What restriction would we need to make so that at least a piece of this function has an inverse?
Again, the development is similar to $\sin ^{-1}(x)$, review as needed.

Finding exact values of the inverse tangent function for special inputs:

$$
\text { Ex: } \tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=
$$

\qquad $\tan ^{-1}(-1)=$ \qquad

Of note about the inverse tangent function,

$$
\lim _{x \rightarrow \infty} \tan ^{-1}(x)=
$$

\qquad and $\lim _{x \rightarrow-\infty} \tan ^{-1}(x)=$ \qquad
as can be seen in the graph.

Math 5B Chapter 6

The other inverse trig. functions
The other inverses:

$$
f(x)=\sec (x)
$$

"Trig friendly" restrictions: \qquad $\sec ^{-1}(2)=$ \qquad $\sec ^{-1}(-\sqrt{2})=$

"Calculus friendly" restrictions: \qquad

$$
\sec ^{-1}(2)=
$$

\qquad

$$
\sec ^{-1}(-\sqrt{2})=
$$

See the book for $\csc ^{-1}(x)$ and $\cot ^{-1}(x)$. You do not need to memorize these restrictions, but do know how to find values for a given set of restrictions.

Mixed Compositions -

Find exact values

$\sin \left(\cos ^{-1}\left(\frac{3}{5}\right)\right) \quad \tan \left(\sin ^{-1}\left(\frac{-2 \sqrt{5}}{5}\right)\right)$

$$
\cos \left(\tan ^{-1} x\right)
$$

Math 5B Chapter 6

6.1ii Derivatives of Inverse Functions

Now for some Calculus. Let's look at some derivatives from the earlier example $f(x)=\frac{1}{2} x^{2}+2 ; \quad x \geq 0$.

For every point (x, y) on the graph of f there is a point (y, x) on the graph of f^{-1}. I will call these companion points.

What is the relationship between the derivative of $\mathrm{f} f$ at point P and the derivative of f^{-1} at P 's companion point?

Label the points shown:

$$
\frac{d}{d x}\left(f^{-1}\right)^{\prime}(a)=
$$

How do we find $f^{-1}(a)$ if we don't have the formula for $f^{-1}(x)$? Example: For $f(x)=2 x+\cos x$, find $\left(f^{-1}\right)^{\prime}(1)$ or $\frac{d}{d x}\left[f^{-1}(x)\right]_{x=1}$

Alternate approach: \qquad

Math 5B Chapter 6

6.2ii: Derivatives of Exponential Functions:

Goal: find a formula for the derivative of $f(x)=a^{x}$
$\frac{d}{d x}\left[a^{x}\right]=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$

Suppose we just try to find the derivative at a specific point, $\mathrm{x}=0$.
Recall $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$, so $\quad f^{\prime}(0)=$

Then so far, $\frac{d}{d x}\left[a^{x}\right]=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=a^{x} f^{\prime}(0)$
Lets look further at this limit. Approximating $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ numerically for $\mathrm{a}=2$ and $\mathrm{a}=3$:

Math 5B Chapter 6

h	$\frac{2^{h}-1}{h}$	h	$\frac{3^{h}-1}{h}$
1	1	1	2
.5	0.82842712	.5	1.4641016
.1	0.71773463	.1	1.1612317
.01	0.69555501	.01	1.1046692
.001	0.69338746	.001	1.099216
.0000001	0.6931472	.0000001	1.0986123

Limit exist? Need more values?

So for $f(x)=2^{x}, f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.693$ and similarly, for $g(x)=3^{x}, g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.099$. (See graph)
Then the general derivative, $\frac{d}{d x}\left[2^{x}\right] \approx 2^{x}(0.693)$ and $\frac{d}{d x}\left[3^{x}\right] \approx 3^{x}(1.099)$

We found above, for $\mathrm{x}=0$ with $f(x)=2^{x}$ and $g(x)=3^{x}$

Math 5B Chapter 6

So far, we are finding it difficult to find there are some values for "a" for which work backwards?

$f^{\prime}(0)$ and thus $f^{\prime}(x)$ exactly, at least for a $=2,3$. It it possible these computations provide and exact value for $f^{\prime}(0)$. What if we

Looking at the above graph, there must be some choice of "a" between 2 and 3 , such that the slope of the tangent is exactly ONE. Let's call that choice of " a ", " b ". We don't know the value of " b ", but we are choosing " b " such that $\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=1$, so that if $f(x)=b^{x}$, then $f^{\prime}(0)=1$ and in this special case, the general derivative is $\frac{d}{d x}\left[b^{x}\right]=b^{x} f^{\prime}(0)=b^{x}$.

Note: The book uses the letter "e" instead of "b" here, giving some indication that this special number is the natural exponential, but at this point we don't know that. All we know is that " e " is a special number between 2 and 3 , such that
for $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$. In this special case, $\frac{d}{d x}\left[e^{x}\right]=e^{x}$.
Derivative Examples Find the following derivatives:
$y=x^{2} e^{x} \quad y=\frac{3 \cos x}{e^{x}}$

Math 5B Chapter 6

Chain Rule formula:

If $f(x)=\sin (x)$, then $f\left(x^{2}\right)=$ \qquad is a composite function requiring the chain rule to differentiate.

Similarly, if If $f(x)=e^{x}, f\left(x^{2}\right)=$ \qquad is a composite function requiring the chain rule to differentiate.

Note: The "inner function" is the exponent.

The book writes a separate formula for this situation, $\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}$ but it is really not necessary if you understand the chain rule. Examples:

Math 5B Chapter 6

Integral Formula:

Every differentiation formula provides an integral formula in reverse. $\quad \int e^{x} d x=e^{x}+C$
Examples:
$\int \sin (3 x) d x$
$\int e^{3 x} d x$
$\int x^{2} e^{x^{3}} d x$
$\int \frac{e^{1 / x}}{x^{2}} d x$

$$
\int_{2}^{3} e^{2-x} d x
$$

(Watch notation of limits if you don't change to u's limits)

See Estimating e, page 297.

Math 5B Chapter 6

6.2ii continued Application Examples:

Find absolute extrema of $f(x)=x^{2} e^{-x / 2}$ on [-1,6] See "Closed Interval Method"

Graph $f(x)=e^{1 / x}$.

Derivation of $\frac{d}{d x}[\ln (x)]$:
Let $f(x)=e^{x} ; \quad f^{-1}(x)=$ \qquad $-$

Examples: Find $\underline{f^{\prime}(x)}$
$f(x)=x^{2} \ln x$
$f(x)=\ln (\sin x)$
$f(x)=\ln x^{3}$
$f(x)=(\ln x)^{3}$
$f(x)=\ln \left(\frac{\sqrt{x^{2}+1}}{x^{3}}\right)$

$$
f(x)=\ln |x|
$$

This leads us to a very important result:
J
Examples:

$$
\int \frac{3 x}{x^{2}+4} d x \quad \int \frac{\ln t}{t} d t \quad \int \tan (x) d x
$$

So we found $\frac{d}{d x}\left[e^{x}\right]=e^{x}$ and $\frac{d}{d x}[\ln x]=\frac{1}{x}$
But what about the general exponential and logarithmic functions?

Math 5B Chapter 6

We started by trying to develop a formula for $\frac{d}{d x}\left[a^{x}\right]$
To work with a^{x} we need only remember that by using the properties of logarithms a^{x} can be written in terms of e as:

$$
a^{x}=e^{x \ln a} \text { (Why?) }
$$

Then $\frac{d}{d x}\left[a^{x}\right]=\frac{d}{d x}\left[e^{x \ln a}\right]=$ \qquad
Example:

$$
\frac{d}{d x}\left[3^{x}\right]=\quad \frac{d}{d x}\left[5^{x^{2}}\right]=
$$

$\int 4^{x} d x$

As for the general logarithm, $\log _{a} x$, we can use the \qquad formula to write $\log _{a} x$ in terms of $\ln x$. $\log _{a} x=\frac{\ln x}{\ln a}$

Then

$$
\frac{d}{d x}\left[\log _{a} x\right]=\frac{d}{d x}[\ln x]=
$$

Find $\frac{d y}{d x}: \quad y=\log _{8}(x)$

$$
y=\log _{7}(2 x)
$$

Logarithmic Differentiation:

A method of using \qquad to differentiate and functions involving exponential expressions with \qquad base and exponent.

Example: Find y^{\prime} if $y=\frac{x^{3}(2 x+5)^{4}}{\sqrt{x^{2}-8}}$. Quotient, product, chain rule........

Example: $\frac{d}{d x}\left[x^{x}\right]$

See in book, e as a limit. $e=\lim _{x \rightarrow 0}(1+x)^{1 / x}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$

Math 5B Chapter 6

6.6ii Derivatives of Inverse Trigonometric Functions

Develop formula for the derivative of $f(x)=\sin ^{-1}(x)$

Similarly, we can derive the formulas for the other inverse trig function derivatives.
$\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$

$$
\frac{d}{d x}\left[\cos ^{-1}(x)\right]=
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[\csc ^{-1}(x)\right]= \\
& \frac{d}{d x}\left[\sec ^{-1}(x)\right]= \\
& \frac{d}{d x}\left[\cot ^{-1}(x)\right]=
\end{aligned}
$$

\qquad
$\frac{d}{d x}\left[\tan ^{-1}(x)\right]=$ \qquad
Examples:

Math 5B Chapter 6

Integration. From the above derivative formulas, we gain the following antiderivative formulas:

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\square \int \frac{1}{1+x^{2}} d x=\square \quad \int \frac{1}{x \sqrt{x^{2}-1}} d x=
$$

\qquad
Examples:
$\int_{0}^{1 / 2} \frac{3}{\sqrt{1-x^{2}}} d x$

$$
\int \frac{1}{x \sqrt{9 x^{2}-1}} d x
$$

$$
\int \frac{1}{4+x^{2}} d x
$$

Math 5B Chapter 6

$$
\begin{aligned}
& \text { Generalizing Formulas (a>0): } \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+C \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C \quad \int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
$$

$$
\int_{\ln (2)}^{\ln (2 / \sqrt{3})} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x
$$

Math 5B Chapter 6

6.7 Hyperbolic Functions- Quick Introduction

Hyberbolic Cosine: $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ Hyperbolic Sine: $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$
You need to memorize the above formulas, but those are the only formulas I require in this section.
Graphs: (Graphical Addition)

Other Hyperbolics:

$$
\begin{array}{ll}
\tanh x=\frac{\sinh x}{\cosh x} & \operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{1}{\tanh x} \\
\operatorname{sech} x=\frac{1}{\cosh x} & \operatorname{csch} x=\frac{1}{\sinh x}
\end{array}
$$

Identities:

Similar, but different identities to the "Circular" Trigonometric Functions

EX:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

See book for more. You do not need to memorize, but be able to derive.

Math 5B Chapter 6

Derivatives:

Derivation $\frac{d}{d x}[\sinh (x)]$

Similarly we can find:

$$
\begin{array}{ll}
\frac{d}{d x}(\sinh x)=\cosh x & \\
\frac{d}{d x}(\cosh x)=\sinh x \\
\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x & \frac{d}{d x}(\operatorname{coth} x)=-\operatorname{csch}^{2} x \\
\frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x & \frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x
\end{array}
$$

Integrals:

$$
\begin{aligned}
& \int \sinh x d x=\cosh x+c \\
& \int \cosh x d x=\sinh x+c \\
& \int \tanh x d x=\ln (\cosh x)+c \\
& \int \operatorname{coth} x d x=\ln |\sinh x|+c \\
& \int \operatorname{sech} x d x=\tan ^{-1}|\sinh x|+c \\
& \int \operatorname{csch} x d x=\ln \left|\tanh \frac{x}{2}\right|+c
\end{aligned}
$$

See book's examples.

Inverse Hyperbolics

(See book's derivation of $\sinh ^{-1}(x)$)
Given $f(x)=\cosh (x) ; x \geq 0$, find $f^{-1}(x)$

Similarly, can obtain:

$$
\begin{array}{ll}
\sinh ^{-1} \mathrm{x}=\ln \left(x+\sqrt{x^{2}+1}\right) & \operatorname{coth}^{-1} \mathrm{x}=\frac{1}{2} \ln \frac{1+x}{1-x} \quad(|x|>1) \\
\cosh ^{-1} \mathrm{x}=\ln \left(x+\sqrt{x^{2}-1}\right) & (\mathrm{x} \geq 1) \\
(\mathrm{x}>1) & \operatorname{sech}^{-1} \mathrm{x}=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right) \quad(0<\mathrm{x} \leq 1) \\
\tanh ^{-1} \mathrm{x}=\frac{1}{2} \ln \frac{1+x}{1-x} \quad(|x|<1) & \operatorname{csch}^{-1} \mathrm{x}=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(\mathrm{x} \neq 0)
\end{array}
$$

$$
\frac{d}{d x}\left[\cosh ^{-1}(x)\right]
$$

Similarly, can obtain:

$$
\begin{aligned}
& \frac{d}{d x} \sinh ^{-1} \mathrm{x}=\frac{1}{\sqrt{1+x^{2}}} \\
& \frac{d}{d x} \cosh ^{-1} \mathrm{x}=\frac{1}{\sqrt{x^{2}-1}} \\
& \frac{d}{d x} \tanh ^{-1} \mathrm{x}=\frac{1}{1-x^{2}} \quad(|\mathrm{x}|<1) \\
& \frac{d}{d x} \operatorname{coth}^{-1} \mathrm{x}=\frac{1}{1-x^{2}} \quad(|\mathrm{x}|>1) \\
& \frac{d}{d x} \operatorname{sech}^{-1} \mathrm{x}=\frac{-1}{x \sqrt{1-x^{2}}} \quad(0<\mathrm{x}<1) \\
& \frac{d}{d x} \operatorname{csch}^{-1} \mathrm{x}=\frac{-1}{|x| \sqrt{1+x^{2}}} \quad(\mathrm{x} \neq 0)
\end{aligned}
$$

Which lead to our ultimate goal in studying these functions in this course....
Integration Formulas

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1+x^{2}}} d x=\sinh ^{-1} \mathrm{x}+\mathrm{C} \\
& \int \frac{1}{\sqrt{x^{2}-1}} d x=\cosh ^{-1} \mathrm{x}+\mathrm{C} \quad(\mathrm{x}>1) \\
& \int \frac{1}{1-x^{2}} d x=\left\{\begin{array}{ll}
\tanh ^{-1} x+C & |x|<1 \\
\operatorname{coth}^{-1} x+C & |x|>1
\end{array}\right\}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C \\
& \int \frac{1}{x \sqrt{1-x^{2}}} d x=-\operatorname{sech}^{-1}|\mathrm{x}|+\mathrm{C} \\
& \int \frac{1}{x \sqrt{1+x^{2}}} d x=-\operatorname{csch}^{-1}|\mathrm{x}|+\mathrm{C}
\end{aligned}
$$

Examples:
$\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x$

$$
\int \frac{d x}{\sqrt{9 x^{2}-25}}
$$

$$
\int \frac{e^{2 x}}{\sqrt{1-e^{4 x}}} d x
$$

6.8: L'Hospital's Rule

Limit review problems:
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
$\lim _{x \rightarrow \infty} \frac{x^{5}}{3 x^{5}+x+4}$
$\lim _{x \rightarrow 0} \frac{\sin x}{x}$
$\lim _{x \rightarrow 3^{+}} \frac{7}{x-3}$

Important note on notation: Infinity is not a number, don't treat it like one!

Now consider:
$\lim _{x \rightarrow \infty} \frac{e^{x}}{x}$
$\lim _{x \rightarrow \infty} \frac{\ln x}{x}$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

Indeterminate Forms of Type \qquad or \qquad

Math 5B Chapter 6

L'Hospital's Rule: Suppose that f and g are differentiable and that $g^{\prime}(x) \neq 0$ on an open interval I that contains a (except possible at a), if the $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is of the indeterminate type $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ if the limit on the right exists (or is infinite). This is also valid for one sided limits or limits as $x \rightarrow \pm \infty$.

See proof for $\frac{0}{0}$ case in book. Case $\frac{ \pm \infty}{ \pm \infty}$ is in Advanced Calculus
Geometric idea:

FIGURE 1

Figure 1 suggests visually why l'Hospital's Rule might be true. The first graph shows two differentiable functions f and g, each of which approaches 0 as $x \rightarrow a$. If we were to zoom in toward the point $(a, 0)$, the graphs would start to look almost linear. But if the functions actually were linear, as in the second graph, then their ratio would be

$$
\frac{m_{1}(x-a)}{m_{2}(x-a)}=\frac{m_{1}}{m_{2}}
$$

which is the ratio of their derivatives. This suggests that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Math 5B Chapter 6

Examples:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x} \quad \lim _{x \rightarrow \infty} \frac{\ln x}{x} \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

Sometimes, the previous methods learned are preferable: $\lim _{x \rightarrow \infty} \frac{x^{5}}{3 x^{5}+x+4}$

If L'Hospital's rule is applied when it should not be, it may yield the wrong answer: $\lim _{x \rightarrow 3^{+}} \frac{7}{x-3}$
Other Indeterminate Forms: $0 \bullet \pm \infty, \infty-\infty, \infty^{0}, 0^{0}, 1^{\infty}$

$0 \cdot \pm \infty$

If the $\lim _{x \rightarrow a} f(x) g(x)$ is of the indeterminate type $0 \bullet \pm \infty$, then rewrite $f g$ as \qquad or \qquad which will then cause the indeterminate form \qquad or. \qquad , allowing L'Hospital's rule to be used.

Math 5B Chapter 6

Examples:

$$
\lim _{x \rightarrow 0^{+}} x^{2} \ln x \quad \lim _{x \rightarrow-\infty} x e^{x}
$$

$\infty-\infty$

If the $\lim (f(x)-g(x))$ is of the indeterminate type $\infty-\infty$, then try to algebraically manipulate to the indeterminate form
\qquad or. \qquad , allowing L'Hospital's rule to be used.

Examples:
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)
$$

$$
\lim _{x \rightarrow \infty}\left(x^{2}+x\right)
$$

Note: \qquad

Math 5B Chapter 6

$$
\infty^{0}, 0^{0}, 1^{\infty}
$$

If the $\lim _{x \rightarrow a} f(x)^{g(x)}$ is of the indeterminate type $\infty^{0}, 0^{0}, 1^{\infty}$, use logarithms/exponentials to rewrite $f(x)^{g(x)}$ in the form $e^{g(x) \ln (f(x))}$. Now the exponent $g(x) \ln (f(x))$ is of the form $0 \cdot \pm \infty$ and we can use above methods. (Alternately, let $y=f(x)^{g(x)}$, take \ln of both sides, then take the limit and solve for y)

Examples:

$$
\lim _{x \rightarrow 0^{+}} x^{\sin x}
$$

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)^{x}
$$

Note: \qquad

